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Abstract--The axisymmetric air-bubble plume in water may be thought of as emanating from a virtual 
point source located at some distance below the real source. To give a phenomenological description of 
this system one has at one's disposal the equation of continuity, the balance equation for momentum, 
and the balance equation for kinetic energy. The most common way of approach so far has been to make 
use of the first two of these equations, together with the assumption that the rate of entrainment be 
proportional to the vertical centerline velocity. This is the theory developed, in particular, by Ditmars & 
Cederwall (1974). The present paper presents an alternative theory, in which the rate-of-entrainment 
assumption is abandoned and use is made of the kinetic energy equation together with the assumption 
that the most dominant component of the Reynolds stress be self-preserved. Very good agreement is found 
in this way with the large scale experiments of Kobus 0968) and Milgram (1983). The agreement is 
somewhat better than that found for the plane plume; the analogous theory for this case was developed 
by one of the present authors (I.B.). The conclusion of our analysis is that the kinetic energy approach 
stands out as a quite viable alternative for engineering applications in the axisymmetric case. Copyright 
© 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

F r o m  an  engineer ing v iewpoin t  the a i r -bubb le  p l u m e - - w h e t h e r  it is two-d imens iona l  emana t ing  
f rom orifices in a pipel ine or  ax i symmetr ic  emana t ing  f rom a (vir tual)  po in t  s o u r c e - - i s  a useful 
device for  a number  o f  reasons.  Some o f  them are: 

(1) P roduc t i on  o f  an oppos ing  surface current  in tended to d a m p  or  even k inemat ica l ly  s top 
incoming  waves f rom the sea, thus p ro tec t ing  h a r b o u r  areas  f rom damage .  The  theory  o f  
Tay lo r  (1955) based  upon  p r io r  mode l  scale exper iments ,  and  the subsequent  large scale 
exper iments  o f  Bulson (1961, 1963, 1968), are  i m p o r t a n t  works  in this d i rec t ion  (a 
genera l iza t ion  o f  Tay lo r ' s  theory  was la ter  given by Brevik 1976). 

(2) Ma in t enance  o f  ice-free condi t ions  dur ing  the winter  season. Ins ta l la t ions  o f  this k ind  are 
in cur ren t  use in Norweg ian  fjords.  

(3) Crea t ion  o f  good  mixing  condi t ions  in more  or  less isola ted fjords.  I t  happens  tha t  the 
ent rance  region connect ing  the f jord with the open sea on the outs ide  is so shal low and 
n a r r o w  tha t  the t idal  currents  are  insufficient to cleanse the f jord.  Ins ta l l a t ion  o f  an air  
cur ta in  emana t ing  f rom a pipel ine s i tuated at  some convenient  dep th  has in pract ice  tu rned  
ou t  to be qui te  an  efficient remedy to br ing  oxygen-poor  d i r ty  water  up to the free surface 
where the po l lu tan ts  evapora te .  Again ,  ins ta l la t ions  o f  this type are  in use in Norweg ian  
fjords.  Des t ra t i f ica t ion  o f  d r ink ing  water  reservoirs  is ano the r  i m p o r t a n t  app l ica t ion  (see, for  
instance,  Sch ladow 1992). 

(4) Crea t ion  o f  "a i r - l i f t "  in an oil reservoir  in cases when the na tu ra l  pressure in the reservoir  
is d iminishing,  thus helping one to improve  the efficiency dur ing  oil exp lora t ion .  

There  are  basical ly  two different  versions o f  an a i r -bubb le  system. Either,  the p lume  is 
two-d imens iona l  (plane)  on  a large scale, created by air  emana t ing  th rough  orifices in a hor izon ta l  
pipeline.  Or,  the p lume  is ax isymmetr ic ,  emana t ing  f rom a single (vir tual)  po in t  source.  In  any case, 
a p lume is a tu rbu len t  and  very compl ica ted  system when looked  upon  in detai l .  The  degree o f  
complex i ty  met  with when a t t empt ing  to descr ibe such a p lume  theoret ical ly ,  depends  evident ly  on 
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which scale is chosen to be important. There are numerous works in the literature discussing the 
behaviour of bubble plumes, from various points of view. We may mention review papers of van 
Wijngaarden (1972), Harper (1972), Miksis & Ting (1992), the book of Clift et al. (1978), and most 
recently, the book of Brennen (1995). There exist several doctor theses, among them M~ider (1971), 
Goossens (1979), Sjoen (1983), Johansen (1990), Torvik (1990) and Jakobsen (1993), all of which 
contain a considerable amount of general material about bubble plumes. The (unpublished) report 
of Haaland (1979) gives an extensive and useful critical survey over the applicability of different 
mathematical models for plumes. As regards ordinary research papers, we mention the ones of 
McDougall (1978) and Asaeda & Imberger (1993), both dealing with plumes in stratified 
environments. Kumar  & Brennen (1993) consider nonlinear interactive effects between bubbles. 
Islam et al. (1995) propose a model in which the spreading rate for an axisymmetric plume is taken 
to be exponential. 

In engineering applications it is usually sufficient to work on the gross scale level, implying that 
the air-water mixture may be considered as a continuous fluid whose density p is slightly varying 
throughout the plume. Early work on the equations of motion for an air-water mixture was made 
by van Wijngaarden (1968). In engineering practice one usually considers three basic equations, 
viz. the continuity equation, the balance equation for momentum, and the balance equation for 
kinetic energy. Also, some sort of  closure relation is needed. Most workers in the field follow 
Ditmars & Cederwall (1974); cf. also Wilkinson (1979), in using only the two first of these 
equations, adopting as closure conditions that the rate of entrainment be proportional to the 
centerline velocity. As a possible alternative approach, one of us (Brevik 1977) developed for the 
case of a plane plume theory in which the kinetic energy balance equation was invoked, together 
with the closure condition that the most dominant Reynolds stress component be self-preserved. 
The theory was compared with the extensive large scale experiments of Kobus (1968, 1970, 1972). 
The main result of  the comparison was that the measured standard deviation a for the mean vertical 
water velocity was reproduced quite well by the theory, whereas the theoretical values for the 
centerline velocity uc came out somewhat high. Moreover, because of the experiment, we adopted 
the following value for the relative bubble velocity Ure 1 with respect to the ambient water: 

b / r e  I = 0.40 m/s. [1] 

This value is probably also somewhat high; when single bubbles rise through still water it is known 
from observations that the terminal velocity lies between 20 and 30 cm/s when the bubble diameter 
lies between 1 mm and 1 cm. Classic studies on single bubble rise are those of Haberman & Morton 
(1953) and Siemens (1954). A useful compilation of data is given in Fig. 7.3 in Clift et al. (1978). 
We note here that because of  the strong turbulence in the plume, this case is physically quite 
different from that of single bubble rise. There is interaction between the bubbles influencing their 
collective terminal velocity (cf. figure 11 in Kobus (1968), and also the discussion in section 6.1 
below). It would be premature simply to reject [1] on the basis of single bubble dynamics. However, 
when all aspects of this kinematic energy theory are taken together, we think that it is fair to 
conclude that its practical usefulness, in the case of two-dimensional plumes, seems to be limited. 

The purpose of the present paper is to develop the same kind of theory, involving use of the 
kinetic energy equation together with the assumption about self-preservation for the most 
dominant Reynolds stress component, for the axisymmetric bubble plume. Remarkably enough, 
it turns out that the agreement with Kobus'  experiments is now quite good, much better than it 
was in the plane case. Thus both the standard deviation a and the centerline velocity Uc are 
reproduced fairly well. Moreover there is no longer any need of straining the value of the input 
parameter Urea; we can simply adopt the value 

Urel = 0.30 m/s, [2] 

which is quite reasonable. These properties in general obviously support our confidence in 
the kinetic energy theory in the axisymmetric case. Also, the agreement with the more 
recent experiment of Milgram (1983) turns out to be quite good. An additional and 
unexpected result of the analysis is that the integral expressions for two quantities, called Ip*ane and 
/, turn out to be of almost the same magnitude in the two cases. These quantities are defined 
as follows. 
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Consider first the two-dimensional case. Assume stationary conditions, and let an overbar denote 
a mean value. For  the velocity components Uk of  the fluid we thus have Uk = ~k + U'k, where a prime 
denotes the fluctuating component. Let the positive z axis be pointing upwards, and let uc(z) be 
the mean centerline velocity. The central cross-correlation term for the velocity is UxU'~. We assume 
that the self-preservation property holds for the correlation term. This implies that 

u'~u'~ 
u2(z ) - f (~l ), [3] 

in whichf is  an unspecified function of the parameter r /=  x /a ( z ) ,  a(z)  being the standard deviation 
for the velocity field. We can now write down the definition of Ipla.e : 

/plane ~ ~Ce(-~/2)~2d~ = constant. [41 

The prefactor is included for practical reasons. In the theoretical solution obtained from the 
formalism, Ip~ane plays the role of  an input parameter. 

The definition of  I in the axisymmetric case is quite analogous. We introduce cylindrical 
coordinates r, 0, z, the positive z axis pointing upwards as before. The most dominant correlation 
term is now u;u'~. Imposition of the self-preservation property yields 

u;u; 
u~(z) - f  (r/), [5] 

where f is an unspecified function of  the parameter r /=  r /a(z )  (note that uc, f ,  and a are here 
quantities referring to the axisymmetric case only). The definition of  I is 

I - 6 t/2fe ( 1/2)~2dt/= constant. [6] 
0 

The experimental result that the magnitudes of  Iplan e and I turn out to be almost the same in the 
two cases, hints towards some kind of  universality property for this constant. 

The general fact that it is easier to fit a simple phenomenological theory to the axisymmetric 
plume than to a two-dimensional plume, is perhaps not so surprising after all. An air bubble is 
a three-dimensional object. To picture the air bubble swarm from a horizontal pipeline as a 
two-dimensional bubble screen can only serve as a very rough approximation to the real situation, 
the more so because of  the finite spacing between the orifices in the pipe. It might seem natural 
beforehand, on physical grounds, to expect that the neglect of azimuthal variation in a plume 
generated from a single source is a better approximation than the neglect of longitudinal variation 
in a plume generated from a pipeline. 

2. ON THE T W O - D I M E N S I O N A L  P L U M E  

For  reference purposes we shall give a brief survey of the theory for a two-dimensional 
plume, as given in Brevik (1977). The situation is sketched in figure 1. The origin of  the coordinate 
system is taken to lie at the bottom, the y axis lying along the pipe. The water depth is D, the 
atmospheric pressure as a head of  water is P;  the total head is D* = D + P. The air-water mixture 
is regarded as a fluid with effective density p ( z , x ) ,  being slightly less than the density Pw of 
ambient water. We let Pa be the density of  air in the bubbles, and m the mass of  air in all bubbles 
per unit volume. The mean of the vertical component of the momentum balance equation can be 
written 

+ aw ~x---~ (a~ak + u;u',) = r~g ~ ,  [7] d---~- 

where ffa is the mean of the dynamic pressure Pd = P - p w g ( D  - z ) ,  p being the total pressure. We 
shall henceforth neglect Pd. This is a common approximation made in engineering bubble plume 
theory. The approximation seems to be quite reasonable: under stationary conditions Pd should be 
expected to fluctuate around zero, or very close to this. We also assume that the fluctuations are 



538  1. BREVIK and R. KILLIE 

~7 

D 

I I I I I I I I I y  e l ¢ ' l l l l l l  

/ Z0 

Figure 1. Sketch of the bubble plume. The figure shows the two-dimensional case. 

small compared with the mean velocity in the vertical direction: u'~2/~2<< 1, and we take the lateral 
variations of g: and rh to be given by Gaussian distributions: 

~z(z, x) = Uc(Z)exp 2~2(z) , [8] 

r~(z, x) = mc(z)exp 222~2(z) • [91 

Here uc, m~ are mean centerline quantities, and ~r is the standard deviation for the velocity field. 
We shall treat 2 as a constant. In reality this is only a rough approximation. The motivation for 
adopting this approximation is twofold: (i) it is mathematically simplifying; and (ii) the predicted 
behaviour of  the plume is rather insensitive to different input values for 2. For  these reasons it has 
been become common to put 2 = const in the engineering literature. The proposed values of 2 vary 
between 0.2 (Ditmars & Cederwall 1974) and 1 (Milder 1971, Goossens 1979). Assuming isothermal 
expansion of the air as it rises, and taking into account the conservation equation for the mass 
of  rising air, we arrive at the following differential equation for u~ and a: 

d ( ~ ) , . . 2  gQOp 1 [10] 
d~ [u~ (z )a(z )] = D* - -  Z blz(g ) "~- ( l  + /~2) l /2Ure  I ' 

Here Q0 is the expenditure of air per unit length of  pipe, reduced to atmospheric pressure, and 
Ure~ is the bubble-water slip velocity (assumed to be a constant, for simplifying reasons). Equation 
[10] was obtained also by Ditmars and Cederwall (1974). 

The same technique can be applied to the kinetic energy balance equation. On the differential 
level this equation reads to leading order 

,~x--~ 5 a~a~ + - ~ ( u ~ u ; ) =  p," Ill] 

An important assumption in the theory is that of self-preservation. With regard to ~z and rh, the 
self-preservation property was built into the formalism of equations [8] and [9]. With regard to the 
cross-correlation term, this property was written down in [5]. Based upon these assumptions we 
derive the following energy equation: 

d {6~,/2 gQOp u~(z) 3 
d--z [u~(z)a(z)]= ~-~} D* - z  u , (z )+(1 +22)'/2ur~ I Ip,,,¢uc(z), [12] 
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in which Ipl..~ is as given in [4]. The value of Ipi..~ has to be inferred from experiments. Using data 
from the large scale experiment of Kobus (1968), with D = 4.30 m, we obtain 

/p~..¢ = 0.13. [13] 

As regards the value of 2, Brevik (1977) follows Ditmars & Cederwall (1974) in putting 2 = 0.2 
throughout. As already mentioned, Ur~t is chosen to be 0.40 m/s in order to obtain rough agreement 
with Kobus' data. 

3. AXISYMMETRIC PLUME: G O V E R N I N G  EQUATIONS 

An analogous description will now be given for the axisymmetric plume. As already mentioned 
we introduce cylindrical coordinates r, 0, z, and let for the moment the origin be located at the 
bottom, i.e. at the real source. The mean of the continuity equation becomes 

1 t~(ru~) tguz 
r c3-----~ + --~-z =0" [141 

Consider next the vertical component of the momentum balance equation, observing as before, that 
the buoyancy force density is equal to mgpw/p,. We take the mean of the equation, neglect the 
dynamic pressure p--~, replace the density p of the air-water mixture by Pw, take into account the 
continuity equation [14], and assume finally that the magnitude of the vertical derivative of the zz 
component of the Reynolds stress is much smaller than the derivative of the rz component, i.e. 

t 2  t t 
l ~ / ~ 2 U z  I<<l~/~rUrUz I" T h e  r e s u l t  b e c o m e s  

~z 1 O 1 d fitg a~ + -  (ra, a~) + -  (ru~u'~) = - - .  [15] rTrr 

We integrate this equation over a fictitious cylinder of infinite width and arbitrary height z, taking 
into account the boundary conditions 

r = O: ur = O, (ru~u'~) = O, u~ finite, 

r ---, oo: u2 ~ O, (ru~u~)---~ O, (rut) finite. 

Then 

fo g g fo  !dz  ~°°fitrdr. [16] a~rdr = P, J0 

To proceed further we have to model the variations of ~ ,  fit, and p~. In analogy with [8] and [9] 
we assume Gaussian distributions: 

Uz(Z, r) = uc(z)exp 2tr2(g ) , 

~ (z, r) = m~ (z)exp 2~. 2e 2(z) , 

[17] 

[18] 

and we assume, as before, that Pa is determined by the isothermal equation of state for the air. 
Then [16] yields 

2 2 2 g p 2 2 ~  mc ~r2 
Uc (7 = - -  Jo P,0 D~ ~ z dz, [ 19] 

where P,0 is the air density at atmospheric pressure. We take into account the conservation equation 
for the rate of mass Q,, emitted from the source, 

I - Qm = 2re fit(uz + Ur~l)rdr, [20] 
dO 
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where the relative velocity ur¢l as before is assumed constant. Upon integration, [20] can be 
rewritten as 

Qm 
mc = 2rt22cr2[( 1 + 22 ) lu ¢ + Urel ] • [21] 

Thus me can be eliminated from the formalism. Insertion into [19] and differentiation with respect 
to z yields the momentum equation 

d [u~(z)a2(z)] gQOp [22] 
dz z t ( D * - z ) [ ( 1  +22)  'Uc(Z)+Urel]' 

with Q0 = Qm/pao. This equation was also obtained by Ditmars & Cederwall (1974). The unknown 
quantities are uc and a, whereas 2 and ur¢~ are assumed known. 

The kinetic energy equation is derived analogously. The mean of the differential equation reads 

5az +- r ~r 2 rffra" r ~r (ru;u'~) Pa [23] 

We integrate over the same cylinder volume as before, taking into account the same boundary 
conditions. After a partial integration of the integral containing the correlation term, and a 
differentiation of the whole equation with respect to z, we obtain 

d f f l  g f[ dZ ~ff~rdr - J0 UrU~ ~Tr rdr = Pa rh~rdr. [24] 

Now we insert the self-preservation condition on the correlation u~ u~, as expressed in [5]. Then 
using [21], [18], [17] and the isothermal gas law p~ = P a 0 ( D * - z ) / P ,  we finally obtain the energy 
equation in the form 

d 3gQ°P u~ (z) Iu~ (z)a(z),  [25] 
dz [b/~(Z)O'2(Z)] - -  7t ( D* - z) u~(z ) + (1 + 22)u~, 

where I is defined in [6]. Since f is not known, the value of I has to be determined by experiment. 
(The formal analogy between the last terms in [12] and [25] is the reason why it is natural to define 
I with the prefactor 6.) In view of the self-preservation condition [5] serving as closure relation, 
the energy equation [25] and the momentum equation [22] form a closed system of equations for 
the two unknowns Uc and a. 

4. M E T H O D  OF S O L U T I O N  

4.1. Nondimensional form of  the equations 

It is convenient to express the governing equations in nondimensional form. We may introduce 
three nondimensional variables s, if, and v, defined by 

2 2 
b/c Z ~Ure I b/c O" 

s = - - ,  i f = - -  v -  . [26] 
Ur~l D *' gQ op 

These variables are the three-dimensional analogues of the two-dimensional variables used in 
Brevik (1977, although with t replaced by s). Equations [22] and [25] can now be written 

dv 1 1 + 2  2 
d--~ = 1 - { s + 1 + 22, [27] 

d(sv) 3 s 
d~ 1 - ~ s + l + 2 2  

where G is a new nondimensional parameter 

Gs2xflv, [28] 

/ ~,,3 \I/2 

G = \gQOpj  D*I. [291 
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We note that G is the only quantity in the governing equations that describes the strength of the 
plume source. It is possible to rewrite [28] in the form 

ds 2 - 2 2 s s 2 
d ~ =  1 - f f  ( s + l + 2 2 ) v  6 x / ~ .  [301 

The two equations [27] and [30] form a closed system for the two unknowns s and v. The system 
can be integrated with respect to ~ once the initial conditions are known. 

4.2. Initial conditions 

In the immediate neighbourhood of the real source lying at z = 0 the flow depends strongly on 
the source's geometrical details. It is not until the initial region has been passed, that it becomes 
possible to speak about an established plume whose characteristics are (practically) independent 
of  the details of  the source. According to experimental work of Kobus and others it is meaningful 
to perform an analytic continuation of the flow field in the established plume down to a virtual 
point source lying at some position z = -z0 .  Kobus observed z0 = 0.8 m in his experiment; for the 
actual water depths this corresponds to ~0-0.05.  Since we shall be concerned mainly with a 
comparison with Kobus'  observations, and also since moderate variations in ~0 turn out to have 
only a slight influence upon the theoretical results, we shall simply assume 

G0 = 0.05 [31] 

in the following. 
For mathematical reasons it will now be convenient to make a translation of the origin: we let 

z --" Z + Zo, ~ ---* ~ + ~o, D*---~ D + P + zo, [32] 

whereby the virtual source will be located at ~ = 0. 
It turns out to be a quite general property of the various models put forward in the literature 

that uc is predicted to be proportional to z -  ~/3 for small z. See, for instance, the comparisons made 
by Haaland (1979), and the more recent papers of Lemckert & Imberger (1993), and of  Islam et al. 
(1995). In view of  this it is natural to assume that Uc>>Urel for small z, whereby the governing 
equations [27] and [30] can be approximated by 

dv 1 +2 2  1 
- , [ 3 3 ]  

d~ 1 - ~  s 

ds 2 - 2 2 s 2 
a [341 

d~ (1 - ~)v x/~" 

The lowest order in if, in which case 1 - ~ may be replaced by unity in the denominators, [33] and 
[34] can be solved via die Ans/itze s oc ~P, v oc ~q, p and q being constants. The result becomes 

s = L2--~-~j , (small z), [35] 

v = l (small z). [361 

In view of [26] this means uc oc z-~/3 for small z, in agreement with the other models mentioned 
above. The standard deviation for G, again in view of [26], becomes 

(gQOp,~l/2 x /~  oc x /~  oc z (small z), [37] O" ~ - -  - -  

\ ~ U r e  I / /  U c S 

showing the expected linear variation with z near the virtual source. 
Since s ~ oe when ~ ---, 0, we cannot simply start the integration of  [27] and [30] at the origin. 

One possible solution of this problem would be to employ [35] and [36] a small distance A~ away 
from the origin, and to start the numerical integration of the equations thereafter. However, [35] 
and [36] are merely lowest order approximations; they quickly become inaccurate some distance 
away from the origin and an uncritical use of these expressions would imply an appreciable source 
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of  error. A simpler and more correct way of  approach is to transform to two new variables, 
henceforth called k and n, that are proportional  to ~ near the origin and hence satisfy constant 
derivative conditions there. The best choice is to take 

k = sv, n = ( I/3v. [38] 

The governing equations expressed in terms of these variables near the origin become 

dk  3 k 2 
d (  - 1 - ~ G ~ ~ -,/2 (small z), [39] 

dn 1 +22  n n 
(small z), [40] 

d( 1 - ( k 3~ 

and the initial conditions are 

dk 3 dn F3G(I + 
(=0: k=n=0, ~=~(I+22),-d--~ " [41] 

With these initial conditions we can now integrate [39] and [40] upwards from the origin to some 
position ~ = A~, lying sufficiently close to the origin for the condition uc>>u~ to hold. The obtained 
values of  k and n at this position determine in turn via [38] the corresponding values of  s and v. 
The latter values are thereafter used as initial values in the numerical integration of [27] and [30] 
to give us s and v at an arbitrary nondimensional height (. Finally, equations [26] yield the centerline 
velocity uc and the standard deviation tr as functions of the height z above the virtual point source. 

4.3. The values o f  2 and Ure l 

The parameter  2 is the ratio between the standard deviations for air mass density r~ and vertical 
water velocity ~7 z. As already mentioned, in the literature various proposals have been put forward 
for the value of  this parameter,  and the only conclusion that can be drawn with certainty is that 
2 lies somewhere in the interval between 0 and 1. The limit 2 --~ 0 means that all the air rises on 
the centerline, whereas the limit 2 --- 1 means that there is no motion of water outside the bubble- 
containing region. Ditmars & Cederwall (1974) chose 2 = 0.2 on the basis of  Kobus '  data (1968), 
and the same value was adopted by Brevik (1977). Since 2 always occurs in the combination 
(1 + 22), the precise value of 2 is actually not very important if the inequality 2 << 1 holds true. The 
work of  Goossens (1979), however, casts doubts on whether 2 really is a small quantity. It is easy 
to be led astray by visual observations of  the plume: a significant part  of  the air may be contained 
in the small air bubbles that are subject to larger lateral diffusion than the large dominant bubbles. 

0 . 3  

0 . 2  

0.1 

0 5 10 15 20 
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Figure 2. Relation between s and ( for various values of the 
parameter G. 

0.3 

0.2 

0.1 

0 0.02 0.04 0.06 

Figure 3. Relation between v and ( for various values of the 
parameter G. 
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Figure 4. Theoretical centerline velocity u c (m/s) versus 
height z(m) above virtual source, when the parameter 
I = 0.123. Air discharge Q° = 2550 cm3/s. Data points from 

Kobus (1968). 
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Figure 5. Theoretical standard deviation tr (m) versus height 
z (m) above virtual source, when I = 0.123. Air discharge 

Q0= 2550 cm3/s. Data points from Kobus (1968). 

As mentioned, Goossens in fact proposed the extreme value ,~ = 1, on the basis of his own 
experiments. The approach adopted by us is more moderate: we shall put 

2 = 0.5 [42] 

in the following. This seems to be a reasonable mean among the various proposals put forward 
in the past. 

Consider finally the bubble-water relative velocity u~. As the value of  2 has now been decided 
upon, it is seen that the governing equations [27] and [30] for s and v contain only one remaining 
free input parameter, viz. G. According to [29], G depends on u~ and L Therefore, by drawing 
theoretical curves for s = s(()  and v = v(() for various values of  G, as shown in figures 2 and 3, 
and by comparing with Kobus'  observations for uc and a, we can obtain relationships between the 
magnitudes of  Ure~ and I. Actually it is possible in principle to calculate both u~ and I explicitly (cf. 
the more detailed discussion in Brevik 1977). However as this method is somewhat complicated 
and indirect, it is better to assign a definite, reasonable value to Ure~ at once, and rather use the 
formalism's predictions together with Kobus'  observations to derive the optimum value of the 
important parameter L We shall proceed in this way. We take Urn1 = 0.30 m/s, as given already 
above, in equation [2]. Both Ditmars & Cederwall (1974), Goossens (1979), Haaland (1979), and 
Milgram (1983) choose values for urn1 in the neighbourhood of this one. 

5. C O M P A R I S O N  WITH TWO LA RG E SCALE E X P E R I M E N T S  

Our basic theoretical results are those shown in figures 2 and 3. The transform to the dimensional 
quantities uc and a is accomplished via use of [26], as explained at the end of section 4.2. 
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Figure 6. Same as figure 4, but with Qo__ 1300cm3/s. 
Optimum parameter choice is I = 0.113. 
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Figure 7. Same as figure 5, but with Qo__ 1300cm3/s. 
Optimum parameter choice is ! = 0.113. 
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Figure 8. Centerline velocity u c (m/s) when Q 0 =  5800 cm3/s. Opt imum parameter choice is I = 0.131. 

5.1. Kobus' experiment (1968) 

In this experiment the water depth was D = 4.5 m. Different air discharges Q0 were tested. We 
consider first the case Q0 = 2550 cm3/s. Theoretical curves can be drawn for Uc(Z) and a(z) when 
various values are chosen for the parameter L Figures 4 and 5 show the result if I is put equal 
to 0.123, which turns out to be the optimum value in this case. The agreement with Kobus'  
experimental points is remarkably good. We do not encounter the problem with excess theoretical 
values for uc which was so characteristic in the two-dimensional case. Figures 6 and 7 show, for 
the same value of D the corresponding results when Q0= 1300cm3/s. The optimum choice for I 
in this case is I = 0.113. Finally, figure 8 shows the centerline velocity when Q0= 5800 cm3/s, if I 
is given the value 0.131. The variations in the optimum values of I in these three cases are thus 
quite small. It is, moreover, seen that the optimum I for an axisymmetric plume is practically equal 
to the optimum Ip~,ne for a two-dimensional plume; cf. [13]. This coincidence makes it natural to 
speculate if not the two-dimensional integral [4] and the analogous axisymmetric integral [6] 
describe after all one and the same physical quantity, having a very universal character. 

5.2. Milgram's experiment (1983) 

Here, D = 50 m. He measured uc and a versus z in the case of four different air discharges: 
Q0 = (24 000, 118 000, 283 000, 590 000) cm3/s. For Q0 = 24 000 cm3/s we get very good agreement 
with our theoretical model if I is chosen equal to 0.12. Comparisons for uc and a are shown in 
figures 9 and 10, respectively. It is reassuring for the applicability of the theory to note that the 
optimum value of I is so close to the values of the previous figures. For the larger values of Q0, 
it turns out that the optimum values of I become somewhat larger. We shall not go into a further 
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Figure 9. Theoretical centerline velocity uc (m/s) versus 
height z (m) above virtual source, when I = 0.12. Depth 
D = 50 m, air discharge Q0 = 24 000 cm3/s. Data points 

from Milgram (1983). 
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Figure 10. Theoretical standard deviation a (m) versus 
height z (m) above virtual source, when I = 0.12. Depth 
D = 50 m, air discharge Q0 = 24 000 cm3/s. Data points 

from Milgram (1983). 
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analysis of this point here, but mention that the four values of  Q0 above correspond to the following 
optimum values of  I (taken in the same order as above): I = (0.12, 0.15, 0.23, 0.22). With these 
choices f o r / ,  the curves for velocities and widths will in all cases turn out to be in quite good 
agreement with Milgram's observations. 

6. R E M A R K S  ON THE E F F E C T  OF BUBBLE SIZE. C O N C L U S I O N S  

6. I. On bubble size 

Although we have in this paper had engineering applications in mind, it is of interest to discuss 
more closely the relation to basic bubble physics, in particular the effects of  bubble size. 

A general property of large scale bubble plumes seems to be that they give a wide distribution 
of bubble sizes. The observations show that this distribution depends solely upon the air discharge 
rate and varies neither with fluid properties nor orifice diameter for all practical cases. The orifice 
diameter in Kobus'  experiment (1968) varied between 0.5 mm and 5 mm. The equivalent bubble 
diameters de were lying between 1 mm and 1 cm. We find it reasonable to assume, however, that 
this wide range in diameters can for all practical purposes be truncated somewhat: let us assume 
in t~e following that the major part of  the bubbles had their equivalent diameters lying between 
2 mm and 5 mm. It corresponds to E/Stv6s numbers lying in the region 0.5 ~< Eo < 4, where the 
definition of  the E6tv6s number is Eo = gApd~/ty, Ap being the water-air mass difference and a 
here meaning the surface tension. The single bubble terminal velocity then lies roughly between 
20 and 30 cm/s, as already mentioned above (Fig. 7.3 in Clift et al.). The single-bubble Reynolds 
number Re lies in this case roughly in the interval 600 ~< Re <~ 1200. We are then in the so-called 
intermediate bubble regime; the bubbles show oscillatory trajectories and are more or less 
ellipsoidal in form. The E6tv6s number is in most cases too high to yield purely spherical bubbles, 
and is too low to enter the spherical-cap region (see, for instance, Fig. 2.5 in Clift et al.). As far 
as the drag coefficient Co is concerned, we can in cases where Re > 500 employ the value Co = 0.44, 
where CD is defined relative to the equivalent diameter de (Soo 1967, Goossens 1979). 

When we instead of  one single bubble consider a swarm of bubbles, the interaction between the 
bubbles makes the situation extremely complex. Because the surrounding water is set into vertical 
motion by the bubbles, the steady-state mean bubble velocity in the plume is greater than the 
single-bubble velocity considered above. According to Fig. 11 in Kobus (1968) the mean bubble 
velocity was about 0.7 m/s at Q0 = 2000 cma/s, and about 0.9 m/s at Q0 = 7000 cma/s. (The weak 
dependence of the terminal bubble velocity on Q0 was found to correspond to (Q0)015, independent 
of orifice size as mentioned above.) The flow was subject to considerable fluctuations; Kobus 
reported that it became necessary to measure over a period of 5 min at each point. The bubbles 
in such a flow are thus obviously in the intermediate (oscillatory) regime, such as we considered 
above, but now in a relative sense, i.e. with respect to the ambient water. We recall our assumption 
u~j = 0.30 m/s for the slip velocity: this is of  the same magnitude as the rising velocity of  single 
bubbles in still water. The Reynolds number for the bubbles in the plume, relative to the ambient 
water, should then for 2 mm ~< de ~< 5 mm be expected to lie in the interval 600 < Rer~ < 1500. The 
occurrence of  strong oscillations in a plume of  this kind is just as we would expect. 

The magnitude of the Reynolds number is of  importance for the following two processes: 
(i) the interaction between bubbles; and 
(ii) the turbulence and wakes generated by the bubbles. 
We note in this context that in any bubble plume there are two primary length scales associated 

with the production of  turbulence, namely the width of the plume as in single phase flow, and the 
bubble radii (cf. for instance, the discussion of  Sjaen 1983). The turbulence intensity in the plume 
can thus be considered to be the result of the fluctuations produced by the turbulent shear flow 
of  the main plume itself, and the fluctuations produced by the small scale turbulent shear flow 
produced by the wakes of  the bubbles. A typical frequency of  the production of turbulent eddies 
in the wakes is obtained by dividing the relative velocity with an average bubble radius. This gives 
a frequency of about 100 Hz. A similar estimate of  the frequency for large scale eddies of the plume 
is obtained by dividing the plume velocity ( ~  1 m/s) by the plume width (,-~ 1 m), i.e. a frequency 
of  about 1 Hz. The characteristic frequency for the eddies of the main plume is thus about two 
orders of magnitude lower than the characteristic frequency of  the bubble-generated fluctuations. 
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This is typical for large scale bubble plumes. It is reasonable to assume that it is the lower frequencies 
that contain most of  the energy. The bubble-generated turbulence (item (ii) above) in large plumes 
is expected to be relatively small. As regards the interaction between the bubbles, we expect these 
effects to be strong at the actual Reynolds numbers because of the instabilities and the strong mixing. 
One should expect nonlinear effects to play an important role here. The bubble-interaction problem 
is difficult to model analytically; one has to rely upon experimental observations. 

We wish to stress finally that there may occur significant new properties of bubble plumes when 
their dimensions become very large. In Bulson's experiment (1961), where the depth was as large 
as 11 m, and the flow rates per unit length were high, up to Q 0 =  1500 cm2/s, there thus occurred 
a core region at the plume centre which was largely gaseous. Such a core will reduce the resistance 
to bubble rise. Cf. also the discussion by Wilkinson (1979). In this case the average bubble size 
in the core was probably quite large. Even more extreme conditions should be expected in the 
D = 50 m experiment of Milgram (1983). 

6.2. Conclusions, and further remarks 

Let us summarize as follows: 

(1) A central element in the present theory is the use of the kinetic energy equation, which takes 
the form [25] after the imposition of the self-preservation property [5] for the most dominant 
Reynolds stress component. When this equation is taken together with the momentum 
equation [22], we obtain the two governing equations for the assumed continuous air-water 
system, given by [27] and [30] in nondimensional form. The results are shown in figures 2 
and 3. Reinstatement of dimensional units is made via [26], permitting us to calculate uc and 
a versus height z above the virtual point source once the input parameters are known. 

(2) The parameter 2, defined by [18], is put equal to 0.5, the slip velocity u~ is put equal to 
0.30 m/s, and the nondimensional displacement of the virtual source (0 = zo/D* is put equal 
to 0.05. These are fixed parameters. There remains one single nondimensional parameter in 
the formalism, namely the integral I defined in [6], whose value has to be determined from 
experiments. Comparison with Kobus'  experiment (1968) makes it reasonable to expect that 
the value 

I = 0.12 [43] 

is quite appropriate under moderate large scale circumstances. The deviations from this value 
with use of  different air discharges Q0 in Kobus'  experiment were found to be small. 
Moreover, [43] practically agrees with the value of the analogous quantity Ip~a,~ in the case 
of  two-dimensional flow; cf. [13]. In practice, for a given large scale plume with known values 
of  D and Q0, we can easily calculate G from [29] using [43] and the adopted value 
u~e~ = 0.30 m/s, and so the nondimensional solution can immediately be read off from figures 
2 and 3. 

However, in extreme cases of very large depths and air discharges, there are indications 
that the optimum values of I increase somewhat. Thus in the D = 50 m experiment of 
Milgram (1983), in which Q0 took values as large as about 600 000 cm3/s, it turned out that 
the optimum value of  I was lying around 0.2. In practice, one therefore has to know the 
actual air discharge, at least roughly, before applying the theory. 

It should also be observed that the optimum values for 2 and I are interrelated. We actually 
tested our theoretical model against Milgram's experiment choosing 2 = 0.8 as input (this 
was the value for 2 adopted by him). It turned out to be possible to obtain the same kind 
of  agreement as above, with slightly smaller optimum values of  L For instance, the case 
Q0 = 24 000 cm3/s was for 2 = 0.8 found to correspond to I = 0.08. Therefore, as far as the 
very large scale experiment of  Milgram is concerned, there seems to be no reason for 
preferring one particular value of  2 instead of another. On this very large scale, the important 
point is rather that of  mutual consistency in the parameter choices. 

(3) As figures 4--10 show, the agreement between theory and experiment in the axisymmetric case 
is good. There is no sign of the problem with excessive theoretical values for uc which was 
so characteristic for the analogous theory in the two-dimensional case (Brevik 1977). The 
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physical reason for this may be that the three-dimensional nature of air bubbles generally 
makes an axisymmetric model of a single-orifice plume more adaptable than a two-dimensional 
model of a multiply-orifice plume. An important point is also how large is the spacing between 
the orifices in the pipeline; in Kobus' experiment the spacing was quite large (10 cm). The larger 
the spacing, the less adaptable one expects the two-dimensional model to be. 

(4) There exists an experiment of Topham (1975) with air bubble plumes using orifice depths 
up to 60 m and air discharge rates up to 660 000 cm3/s. The results for plume widths and 
centerline velocities versus height show, however, considerable deviations from smooth 
functions, and this experiment is not further analysed here. The reader is referred to the 
discussion of  Milgram (1983) on this point. The reason for the deviations in the measured 
results may have been turbulence-induced disturbances in the measuring equipment. 

(5) How large is the influence from turbulence in the flow field? This point is interrelated to the 
value of 2. Goossens (1979), for instance, introduced the idea of an equivalent velocity profile 
for bubble plumes, claiming that in most of the previous works there has been an underestimate 
of  turbulence through the omission of relevant Reynolds stress terms in the governing 
equations. Thus the presence of excess centerline velocities in two-dimensional models, such 
as in those of Ditmars & Cederwall (1974) and Brevik (1977), is in his opinion ascribed to 
this effect. 

The key question is whether the correlation u~ 2 is really negligible. This correlation is of 
importance for the vertical momentum flux. From the analogous case of a single phase free 
jet, it is known that the vertical correlation amounts only by about 10% to the momentum 
flux and can so be disregarded. In view of  this, it might perhaps appear to be most natural 
to neglect the correlation when modelling bubble plumes also, such as we have done above, 
in agreement with most other workers. However, the bubble plume is after all a two-phase 
system, and some caution is called for when comparing with single phase systems. Goossens 
made use of his observed data in an attempt to evaluate how large a part of  the total 
momentum flux was actually connected with the term u~ 2 . The result was reported to be quite 
appreciable, typically around 30% or more. 

However, we have to stress here that Goossens' analysis is interwoven with his assumption 
of a very large value of 2. He assumed ,~ = 1. We actually made an explicit test of how a large 
2 input value fits into our theoretical model, under moderate large scale conditions. Specifically, 
for the case D = 4.50 m, Q0 = 2550 cm3/s we repeated our calculation of uc and tr inserting 
2 = 0.9 or 2 = 1 as input. We found that the experimental results could not be reproduced 
simultaneously for any common value of L What is clear, is that under moderate large scale 
conditions, such large values of 2 do not fit into our formalism in a natural way. Altogether, 
when considering Kobus' and Milgram's experiment in combination, we find it most 
appropriate to choose 2 = 0.5 as the most optimum general value. It is conceivable that this 
parameter value indirectly takes into account some part of the turbulence effect also. For the 
convenience of the reader, table 1 summarizes some optimum parameter values that we 
recommend. 

Table 1. Proposed opt imum par- 
ameter values in order to fit our 
theoretical model with experiment. 
It is assumed that 2 = 0.5, u~  = 
0.30 m/s throughout.  Water depth 
D =4 .5  m corresponds to Kobus  
(1968), whereas D = 5 0 m  corre- 

sponds to Milgram (1983) 

D (m) QO (cm3/s) I 

4.5 1300 0.113 
4.5 2550 0.123 
4.5 5800 0.131 

50 24 000 0.12 
50 118000 0.15 
50 283 000 0.23 
50 590 000 0.22 
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